linux cpu占用率如何看
275
2022-09-27
Google Earth Engine——BigEarthNet是一个新的耕地Sentinel-2数据,由590,326个Sentinel-2图像斑块组成的土地覆盖高清数据集
BigEarthNet is a new large-scale Sentinel-2 benchmark archive, consisting of 590,326 Sentinel-2 image patches. To construct BigEarthNet, 125 Sentinel-2 tiles acquired between June 2017 and May 2018 over the 10 countries (Austria, Belgium, Finland, Ireland, Kosovo, Lithuania, Luxembourg, Portugal, Serbia, Switzerland) of Europe were initially selected. All the tiles were atmospherically corrected by the Sentinel-2 Level 2A product generation and formatting tool (sen2cor). Then, they were divided into 590,326 non-overlapping image patches. Each image patch was annotated by the multiple land-cover classes (i.e., multi-labels) that were provided from the CORINE Land Cover database of the year 2018 (CLC 2018).
BigEarthNet是一个新的大规模Sentinel-2基准档案,由590,326个Sentinel-2图像斑块组成。为了构建BigEarthNet,最初选择了2017年6月至2018年5月期间在欧洲10个国家(奥地利、比利时、芬兰、爱尔兰、科索沃、立陶宛、卢森堡、葡萄牙、塞尔维亚、瑞士)获得的125张Sentinel-2瓦片。所有的瓦片都通过Sentinel-2 2A级产品生成和格式化工具(sen2cor)进行了大气校正。然后,它们被划分为590,326个不重叠的图像斑块。每个图像斑块都由2018年CORINE土地覆盖数据库(CLC 2018)提供的多个土地覆盖类别(即多标签)进行注释。
Dataset Availability
2017-06-01T00:00:00 - 2018-05-31T00:00:00
Dataset Provider
BigEarthNet
Collection Snippet
ee.ImageCollection("TUBerlin/BigEarthNet/v1")
Bands Table
Name | Description | Resolution | Wavelength | Scale |
B1 | Aerosols | 60 meters | 443.9nm (S2A) / 442.3nm (S2B) | 0.0001 |
B2 | Blue | 10 meters | 496.6nm (S2A) / 492.1nm (S2B) | 0.0001 |
B3 | Green | 10 meters | 560nm (S2A) / 559nm (S2B) | 0.0001 |
B4 | Red | 10 meters | 664.5nm (S2A) / 665nm (S2B) | 0.0001 |
B5 | Red Edge 1 | 20 meters | 703.9nm (S2A) / 703.8nm (S2B) | 0.0001 |
B6 | Red Edge 2 | 20 meters | 740.2nm (S2A) / 739.1nm (S2B) | 0.0001 |
B7 | Red Edge 3 | 20 meters | 782.5nm (S2A) / 779.7nm (S2B) | 0.0001 |
B8 | NIR | 10 meters | 835.1nm (S2A) / 833nm (S2B) | 0.0001 |
B9 | Water vapor | 60 meters | 945nm (S2A) / 943.2nm (S2B) | 0.0001 |
B10 | Cirrus | 60 meters | 1373.5nm (S2A) / 1376.9nm (S2B) | 0.0001 |
B11 | SWIR 1 | 20 meters | 1613.7nm (S2A) / 1610.4nm (S2B) | 0.0001 |
B12 | SWIR 2 | 20 meters | 2202.4nm (S2A) / 2185.7nm (S2B) | 0.0001 |
B8A | Red Edge 4 | 20 meters | 864.8nm (S2A) / 864nm (S2B) | 0.0001 |
影像属性:
Name | Type | Description |
labels | List of Strings | List of landcover types found in this image |
source | String | Product ID of the corresponding Sentinel-2 1C image |
tile_x | Double | X coordinate of tile in source image |
tile_y | Double | Y coordinate of tile in source image |
使用说明:The BigEarthNet Archive is licensed under the Community Data License Agreement – Permissive, Version 1.0. For more information, please refer to the (Sumbul, M. Charfuelan, B. Demir, V. Markl, BigEarthNet: A Large-Scale Benchmark Archive for Remote Sensing Image Understanding, IEEE International Conference on Geoscience and Remote Sensing Symposium, pp. 5901-5904, Yokohama, Japan, 2019.
代码:
var geometry = ee.Geometry.Polygon( [[ [16.656886757418057, 48.27086673747943], [16.656886757418057, 48.21359065567954], [16.733276070162198, 48.21359065567954], [16.733276070162198, 48.27086673747943] ]], null, false);var ic = ee.ImageCollection('TUBerlin/BigEarthNet/v1');var filtered = ic.filterBounds(geometry);var tiles = filtered.map(function(i) { var labels = ee.List(i.get('labels')); var urban = labels.indexOf('Discontinuous urban fabric').gte(0); var highlight_urban = ee.Image(urban).toInt().multiply(1000); return i.addBands( {srcImg: i.select(['B4']).add(highlight_urban), overwrite: true});});var image = tiles.mosaic().clip(geometry);var visParams = {bands: ['B4', 'B3', 'B2'], min: 0, max: 3000};Map.addLayer(image, visParams);Map.centerObject(image, 13);
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~