linux cpu占用率如何看
269
2022-10-08
kubekey1.2.1 安装kubernetes1.21.5 集群
kubekey1.2.1 安装kubernetes1.21.5 集群
标签(空格分隔): kubernetes系列
一: kubekey 的介绍
kubeykey是KubeSphere基于Go 语言开发的kubernetes集群部署工具,使用 KubeKey,您可以轻松、高效、灵活地单独或整体安装 Kubernetes 和 KubeSphere。 KubeKey可以用于以下三种安装场景: 仅安装 Kubernetes集群 使用一个命令安装 Kubernetes 和 KubeSphere 已有Kubernetes集群,使用ks-installer 在其上部署 KubeSphere 项目地址: kubekey 安装单集群 kubernetes
2.1 安装kubekey
集群先安装好docker 准备KubeKey export KKZONE=cn curl -sfL | VERSION=v1.2.1 sh - chmod +x kk
2.2 使用kubekey 来引导集群
yum install scoat conntrack ./kk create cluster --with-kubernetes v1.21.5 --with-kubesphere v3.2.0
查看安装kubesphere 3.2 安装进度 kubectl logs -n kubesphere-system $(kubectl get pod -n kubesphere-system -l app=ks-install -o jsonpath='{.items[0].metadata.name}') -f
2.3 开启某一项功能
开启devops 功能
查看日志: kubectl logs -n kubesphere-system $(kubectl get pod -n kubesphere-system -l app=ks-install -o jsonpath='{.items[0].metadata.name}') -f
修改kubeshpere web 登录密钥:
kubectl patch users
三:kubekey 安装 多节点的集群
3.1 准备环境
准备三台机器 cat /etc/hosts ----- 172.16.10.11 flyfishsrvs01 172.16.10.12 flyfishsrvs02 172.16.10.13 flyfishsrvs03 ----- flyfishsrvs01 用作master 其它节点worker 节点
3.2 准备kubekey
准备KubeKey export KKZONE=cn curl -sfL | VERSION=v1.2.1 sh - chmod +x kk
3.3 准备安装集群的配置文件
./kk create config --with-kubernetes v1.21.5 --with-kubesphere v3.2.1 准备好集群的配置文件 config-sample.yaml vim config-sample.yaml --------------------- apiVersion: kubekey.kubesphere.io/v1alpha1 kind: Cluster metadata: name: sample spec: hosts: - {name: flyfishsrvs01, address: 172.16.10.11, internalAddress: 172.16.10.11, user: root, password: flyfish225} - {name: flyfishsrvs02, address: 172.16.10.12, internalAddress: 172.16.10.12, user: root, password: flyfish225} - {name: flyfishsrvs03, address: 172.16.10.13, internalAddress: 172.16.10.13, user: root, password: flyfish225} roleGroups: etcd: - flyfishsrvs01 master: - flyfishsrvs01 worker: - flyfishsrvs02 - flyfishsrvs03 controlPlaneEndpoint: ##Internal loadbalancer for apiservers #internalLoadbalancer: haproxy domain: lb.kubesphere.local address: "" port: 6443 kubernetes: version: v1.21.5 clusterName: cluster.local network: plugin: calico kubePodsCIDR: 10.233.64.0/18 kubeServiceCIDR: 10.233.0.0/18 registry: registryMirrors: [] insecureRegistries: [] addons: [] --- apiVersion: installer.kubesphere.io/v1alpha1 kind: ClusterConfiguration metadata: name: ks-installer namespace: kubesphere-system labels: version: v3.2.1 spec: persistence: storageClass: "" authentication: jwtSecret: "" local_registry: "" # dev_tag: "" etcd: monitoring: false endpointIps: localhost port: 2379 tlsEnable: true common: core: console: enableMultiLogin: true port: 30880 type: NodePort # apiserver: # resources: {} # controllerManager: # resources: {} redis: enabled: false volumeSize: 2Gi openldap: enabled: false volumeSize: 2Gi minio: volumeSize: 20Gi monitoring: # type: external endpoint: http://prometheus-operated.kubesphere-monitoring-system.svc:9090 GPUMonitoring: enabled: false gpu: kinds: - resourceName: "nvidia.com/gpu" resourceType: "GPU" default: true es: # master: # volumeSize: 4Gi # replicas: 1 # resources: {} # data: # volumeSize: 20Gi # replicas: 1 # resources: {} logMaxAge: 7 elkPrefix: logstash basicAuth: enabled: false username: "" password: "" externalElasticsearchHost: "" externalElasticsearchPort: "" alerting: enabled: false # thanosruler: # replicas: 1 # resources: {} auditing: enabled: false # operator: # resources: {} # webhook: # resources: {} devops: enabled: false jenkinsMemoryLim: 2Gi jenkinsMemoryReq: 1500Mi jenkinsVolumeSize: 8Gi jenkinsJavaOpts_Xms: 512m jenkinsJavaOpts_Xmx: 512m jenkinsJavaOpts_MaxRAM: 2g events: enabled: false # operator: # resources: {} # exporter: # resources: {} # ruler: # enabled: true # replicas: 2 # resources: {} logging: enabled: false containerruntime: docker logsidecar: enabled: true replicas: 2 # resources: {} metrics_server: enabled: false monitoring: storageClass: "" # kube_rbac_proxy: # resources: {} # kube_state_metrics: # resources: {} # prometheus: # replicas: 1 # volumeSize: 20Gi # resources: {} # operator: # resources: {} # adapter: # resources: {} # node_exporter: # resources: {} # alertmanager: # replicas: 1 # resources: {} # notification_manager: # resources: {} # operator: # resources: {} # proxy: # resources: {} gpu: nvidia_dcgm_exporter: enabled: false # resources: {} multicluster: clusterRole: none network: networkpolicy: enabled: false ippool: type: none topology: type: none openpitrix: store: enabled: false servicemesh: enabled: false kubeedge: enabled: false cloudCore: nodeSelector: {"node-role.kubernetes.io/worker": ""} tolerations: [] cloudhubPort: "10000" cloudhubQuicPort: "10001" cloudhubHttpsPort: "10002" cloudstreamPort: "10003" tunnelPort: "10004" cloudHub: advertiseAddress: - "" nodeLimit: "100" service: cloudhubNodePort: "30000" cloudhubQuicNodePort: "30001" cloudhubHttpsNodePort: "30002" cloudstreamNodePort: "30003" tunnelNodePort: "30004" edgeWatcher: nodeSelector: {"node-role.kubernetes.io/worker": ""} tolerations: [] edgeWatcherAgent: nodeSelector: {"node-role.kubernetes.io/worker": ""} tolerations: [] ------------------------
3.4 创建集群
环境缺包: yum install scoat conntrack ./kk create cluster -f config-sample.yaml
3.5 查看k8s 集群状态
kubectl get node kubectl get pod -n kube-system
3.6 kubesphere 3.2.1 安装进度
查看安装kubesphere 3.2.1 安装进度 kubectl logs -n kubesphere-system $(kubectl get pod -n kubesphere-system -l app=ks-install -o jsonpath='{.items[0].metadata.name}') -f
kubectl get pod -A
web 登录访问: http://172.16.10.11:30880/
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~