linux cpu占用率如何看
330
2022-10-25
基于Docker + Consul + Registrator的服务注册与发现集群搭建
前言
近年微服务架构在互联网应用领域中愈来愈火,引入微服务主要解决了单体应用多个模块的紧耦合、无法扩展和运维困难等问题。微服务架构就是按照功能粒度将业务模块进行垂直拆分,对单体应用本身进行服务化和组件化,每个组件单独部署为小应用(从DB到UI)。微服务与微服务之间通过Service API进行交互,同时为了支持水平扩展、性能提升和服务可用性,单个服务允许同时部署一个或者多个服务实例。在运行时,每个实例通常是一个云虚拟机或者Docker容器。
微服务系统内部多个服务的实例之间如何通信?如何感知到彼此的存在和销毁?生产者服务如何知道消费者服务的地址?如何实现服务与注册中心的解耦?这就需要一个第三方的服务注册中心,提供对生产者服务节点的注册管理和消费者服务节点的发现管理。
正文
1. 服务发现与注册
1.1. 具体流程
服务注册中心:作为整个架构中的核心,要支持分布式、持久化存储,注册信息变动实时通知消费者。服务提供者:服务以 docker 容器化方式部署(实现服务端口的动态生成),可以通过 docker-compose 的方式来管理。通过 Registrator 检测到 docker 进程信息以完成服务的自动注册。服务消费者:要使用服务提供者提供的服务,和服务提供者往往是动态相互转位置的。
一个较为完整的服务注册与发现流程如下:
注册服务:服务提供者到注册中心注册;订阅服务:服务消费者到注册中心订阅服务信息,对其进行监听;缓存服务列表:本地缓存服务列表,减少与注册中心的网络通信;调用服务:先查找本地缓存,找不到再去注册中心拉取服务地址,然后发送服务请求;变更通知:服务节点变动时 (新增、删除等),注册中心将通知监听节点,更新服务信息。
1.2. 相关组件
一个服务发现系统主要由三部分组成:
注册器(registrator):根据服务运行状态,注册/注销服务。主要要解决的问题是,何时发起注册/注销动作。注册表(registry):存储服务信息。常见的解决方案有zookeeper、etcd、cousul等。发现机制(discovery):从注册表读取服务信息,给用户封装访问接口。
1.3. 第三方实现
对于第三方的服务注册与发现的实现,现有的工具主要有以下三种:
zookeeper:一个高性能、分布式应用程序协调服务,用于名称服务、分布式锁定、共享资源同步和分布式配置管理。Etcd:一个采用HTTP协议的健/值对存储系统,主要用于共享配置和服务发现,提供的功能相对Zookeeper和Consul相对简单。Consul:一个分布式高可用的服务发现和配置共享的软件,支持服务发现与注册、多数据中心、健康检查和分布式键/值存储。
简单对比:
与Zookeeper和etcd不一样,Consul内嵌实现了服务发现系统,不需要构建自己的系统或使用第三方系统,客户只需要注册服务,并通过DNS或HTTP接口执行服务发现。
2. Consul和Registrator
2.1. Consul简介
Consul是什么
Consul 是一种分布式的、高可用、支持水平扩展的的服务注册与发现工具。它大致包括以下特性:
服务发现: Consul 通过 DNS 或者 HTTP 接口使服务注册和服务发现变的很容易。一些外部服务,例如 saas 提供的也可以一样注册;健康检查:健康检测使 consul 可以快速的告警在集群中的操作。和服务发现的集成,可以防止服务转发到故障的服务上面;键/值存储:一个用来存储动态配置的系统。提供简单的 HTTP 接口,可以在任何地方操作;多数据中心:支持多数据中心以避免单点故障,内外网的服务采用不同的端口进行监听。而其部署则需要考虑网络延迟, 分片等情况等。zookeeper和etcd均不提供多数据中心功能的支持;一致性算法:采用 Raft 一致性协议算法,比Paxos算法好用。 使用 GOSSIP 协议管理成员和广播消息, 并且支持 ACL 访问控制;服务管理Dashboard:提供一个 Web UI 的服务注册于健康状态监控的管理页面。
Consul的几个概念
下图是Consul官方文档提供的架构设计图:
图中包含两个Consul数据中心,每个数据中心都是一个consul的集群。在数据中心1中,可以看出consul的集群是由N个SERVER,加上M个CLIENT组成的。而不管是SERVER还是CLIENT,都是consul集群的一个节点。所有的服务都可以注册到这些节点上,正是通过这些节点实现服务注册信息的共享。除了这两个,还有一些小细节 一一 简单介绍。
CLIENT
CLIENT表示consul的client模式,就是客户端模式。是consul节点的一种模式,这种模式下,所有注册到当前节点的服务会被转发到SERVER节点,本身是不持久化这些信息。
SERVER
SERVER表示consul的server模式,表明这个consul是个server节点。这种模式下,功能和CLIENT都一样,唯一不同的是,它会把所有的信息持久化的本地。这样遇到故障,信息是可以被保留的。
SERVER-LEADER
中间那个SERVER下面有LEADER的描述,表明这个SERVER节点是它们的老大。和其它SERVER不一样的一点是,它需要负责同步注册信息给其它的SERVER,同时也要负责各个节点的健康监测。
其它信息
其它信息包括各个节点之间的通信方式,还有一些协议信息、算法。它们是用于保证节点之间的数据同步、实时性要求等等一系列集群问题的解决。这些有兴趣的自己看看官方文档。
2.2. Registrator简介
什么是Registrator
Registrator是一个独立于服务注册表的自动服务注册/注销组件,一般以Docker container的方式进行部署。Registrator会自动侦测它所在的宿主机上的所有Docker容器状态(启用/销毁),并根据容器状态到对应的服务注册列表注册/注销服务。
事实上,Registrator通过读取同一台宿主机的其他容器Container的环境变量进行服务注册、健康检查定义等操作。
Registrator支持可插拔式的服务注册表配置,目前支持包括Consul, etcd和SkyDNS 2三种注册工具。
2.3. Docker安装Consul集群
2.3.1. 集群节点规划
我本地的使用的是Ubuntu16.04的虚拟机:
Consul的配置参数信息说明:
2.4. Docker安装Consul集群
2.4.1. 拉取consul官方镜像
madison@ubuntu:~$ docker pull consul:latest
2.4.2. 启动Server节点
运行consul镜像,启动Server Master节点node1:
node1:
madison@ubuntu:~$ docker run -d --name=node1 --restart=always \
-e 'CONSUL_LOCAL_CONFIG={"skip_leave_on_interrupt": true}' \
-p 8300:8300 \
-p 8301:8301 \
-p 8301:8301/udp \
-p 8302:8302/udp \
-p 8302:8302 \
-p 8400:8400 \
-p 8500:8500 \
-p 8600:8600 \
-h node1 \
consul agent -server -bind=172.17.0.2 -bootstrap-expect=3 -node=node1 \
-data-dir=/tmp/data-dir -client 0.0.0.0 -ui
查看node1的日志,追踪运行情况:
现在集群中还没有选举leader节点,继续启动其余两台Server节点node2和node3:
node2:
madison@ubuntu:~$ docker run -d --name=node2 --restart=always \
-e 'CONSUL_LOCAL_CONFIG={"skip_leave_on_interrupt": true}' \
-p 9300:8300 \
-p 9301:8301 \
-p 9301:8301/udp \
-p 9302:8302/udp \
-p 9302:8302 \
-p 9400:8400 \
-p 9500:8500 \
-p 9600:8600 \
-h node2 \
consul agent -server -bind=172.17.0.3 \
-join=192.168.127.128 -node-id=$(uuidgen | awk '{print tolower($0)}') \
-node=node2 \
-data-dir=/tmp/data-dir -client 0.0.0.0 -ui
查看node2节点的进程启动日志:
node3:
madison@ubuntu:~$ docker run -d --name=node3 --restart=always \
-e 'CONSUL_LOCAL_CONFIG={"skip_leave_on_interrupt": true}' \
-p 10300:8300 \
-p 10301:8301 \
-p 10301:8301/udp \
-p 10302:8302/udp \
-p 10302:8302 \
-p 10400:8400 \
-p 10500:8500 \
-p 10600:8600 \
-h node2 \
consul agent -server -bind=172.17.0.4 \
-join=192.168.127.128 -node-id=$(uuidgen | awk '{print tolower($0)}') \
-node=node3 \
-data-dir=/tmp/data-dir -client 0.0.0.0 -ui
查看node3节点的进程启动日志:
当3个Server节点都启动并正常运行时,观察node2和node3的进程日志,可以发现node1被选举为leader节点,也就是这个数据中心的Server Master。
再次查看node1节点的进程启动日志:
观察日志发现,node2和node3都成功join到了node1所在的数据中心dc1。当集群中有3台Consul Server启动时,node1被选举为dc1中的主节点。然后,node1会通过心跳检查的方式,不断地对node2和node3进行健康检查。
2.4.4. 启动Client节点
node4:
madison@ubuntu:~$ docker run -d --name=node4 --restart=always \
-e 'CONSUL_LOCAL_CONFIG={"leave_on_terminate": true}' \
-p 11300:8300 \
-p 11301:8301 \
-p 11301:8301/udp \
-p 11302:8302/udp \
-p 11302:8302 \
-p 11400:8400 \
-p 11500:8500 \
-p 11600:8600 \
-h node4 \
consul agent -bind=172.17.0.5 -retry-join=192.168.127.128 \
-node-id=$(uuidgen | awk '{print tolower($0)}') \
-node=node4 -client 0.0.0.0 -ui
查看node4节点的进程启动日志:
可以发现:node4是以Client模式启动运行的。启动后完成后,把dc1数据中心中的以Server模式启动的节点node1、node2和node3都添加到本地缓存列表中。当客户端向node4发起服务发现的请求后,node4会通过RPC将请求转发给Server节点中的其中一台做处理。
2.4.5. 查看集群状态
madison@ubuntu:~$ docker exec -t node1 consul members
dc1数据中心中的4个节点node1, node2, node3和node4分别成功启动,Status表示他们的状态,都为alive。node1, node2, node3以Server模式启动,而node4以Client模式启动。
2.5. Docker安装Registrator
2.5.1. 拉取Registrator的镜像
madison@ubuntu:~$ docker pull gliderlabs/registrator:latest
2.5.2. 启动Registrator节点
madison@ubuntu:~$ docker run -d --name=registrator \
-v /var/run/docker.sock:/tmp/docker.sock \
--net=host \
gliderlabs/registrator -ip="192.168.127.128" consul://192.168.127.128:8500
--net指定为host表明使用主机模式。-ip用于指定宿主机的IP地址,用于健康检查的通信地址。consul://192.168.127.128:8500: 使用Consul作为服务注册表,指定具体的Consul通信地址进行服务注册和注销(注意:8500是Consul对外暴露的HTTP通信端口)。
查看Registrator的容器进程启动日志:
Registrator在启动过程完成了以下几步操作:
查看Consul数据中心的leader节点,作为服务注册表;同步当前宿主机的启用容器,以及所有的服务端口;分别将各个容器发布的服务地址/端口注册到Consul的服务注册列表。
2.5.3. 查看Consul的注册状态
Consul提供了一个Web UI来可视化服务注册列表、通信节点、数据中心和键/值存储等,直接访问宿主机的8500端口。
服务注册列表:
NODES节点下挂载着dc1数据中心中的所有的Consul节点,包括Consul Server和Client。
通信节点列表:
启动Registrator以后,宿主机中的所有容器把服务都注册到Consul的SERVICES上,测试完成!
总结
单数据中心的Consul集群的搭建就完成了!!!后续章节我会介绍如何使用Registrator进行服务注册的标签化。然后通过docker部署多实例的Web容器来实现基于HTTP的RESTful Service和基于TCP的RPC Service的服务注册和健康检查定义,并演示如何以标签标识一个服务的多个实例。
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~