Java数据结构之线段树详解

网友投稿 251 2022-11-05

Java数据结构之线段树详解

目录介绍代码实现线段树构建区间查询更新总结

介绍

线段树(又名区间树)也是一种二叉树,每个节点的值等于左右孩子节点值的和,线段树示例图如下

以求和为例,根节点表示区间0-5的和,左孩子表示区间0-2的和,右孩子表示区间3-5的和,依次类推。

代码实现

/**

* 使用数组实现线段树

*/

public class SegmentTree {

private Node[] data;

private int size;

private Merger merger;

public SegmentTree(E[] source, Merger merger) {

this.merger = merger;

this.size = source.length;

this.data = new Node[size * 4];

buildTree(0, source, 0, size - 1);

}

public E search(int queryLeft, int queryRight) {

if (queryLeft < 0 || queryLeft > size || queryRight < 0 || queryRight > size

|| queryLeft > queryRight) {

throw new IllegalArgumentException("index is illegal");

}

return search(0, queryLeft, queryRight);

}

/**

* 查询区间queryLeft-queryRight的值

*/

private E search(int treeIndex, int queryLeft, int queryRight) {

Node treeNode = data[treeIndex];

int left = treeNode.left;

int right = treeNode.right;

if (left == queryLeft && right == queryRight) {

return elementData(treeIndex);

}

int leftTreeIndex = leftChild(treeIndex);

int rightTreeIndex = rightChild(treeIndex);

int middle = left + ((right - left) >> 1);

if (queryLeft > middle) {

return search(rightTreeIndex, queryLeft, queryRight);

} else if (queryRight <= middle) {

return search(leftTreeIndex, queryLeft, queryRight);

}

E leftEle = search(leftTreeIndex, queryLeft, middle);

E rightEle = search(rightTreeIndex, middle + 1, queryRight);

return merger.merge(leftEle, rightEle);

}

public void update(int index, E e) {

update(0, index, e);

}

/**

* 更新索引为index的值为e

*/

private void update(int treeIndex, int index, E e) {

GhdOUHT Node treeNode = data[treeIndex];

int left = treeNode.left;

int right = treeNode.right;

if (left == right) {

treeNode.data = e;

return;

}

int leftTreeIndex = leftChild(treeIndex);

int rightTreeIndex = rightChild(treeIndex);

int middle = left + ((right - left) >> 1);

if (index > middle) {

update(rightTreeIndex, index, e);

} else {

update(leftTreeIndex, index, e);

}

treeNode.data = merger.merge(elementData(leftTreeIndex), elementData(rightTreeIndex));

}

private void buildTree(int treeIndex, E[] source, int left, int right) {

if (left == right) {

data[treeIndex] = new Node<>(source[left], left, right);

return;

}

int leftTreeIndex = leftChild(treeIndex);

int rightTreeIndex = rightChild(treeIndex);

int middle = left + ((right - left) >> 1);

buildTree(leftTreeIndex, source, left, middle);

buildTree(rightTreeIndex, source, middle + 1, right);

E treeData = merger.merge(elementData(leftTreeIndex), elementData(rightTreeIndex));

data[treeIndex] = new Node<>(treeData, left, right);

}

@Override

public String toString() {

return Arrays.toString(data);

}

private E elementData(int index) {

return (E) data[index].data;

}

private int leftChild(int index) {

return index * 2 + 1;

}

private int rightChild(int index) {

return index * 2 + 2;

}

private static class Node {

E data;

int left;

int right;

Node(E data, int left, int right) {

this.data = data;

this.left = left;

this.right = right;

}

@Override

public String toString() {

return String.valueOf(data);

}

}

public interface Merger {

E merge(E e1, E e2);

}

}

我们以LeetCode上的一个问题来分析线段树的构建,查询和更新,LeetCode307问题如下:

给定一个整数数组,查询索引区间[i,j]的元素的总和。

线段树构建

private void buildTree(int treeIndex, E[] source, int left, int right) {

if (left == right) {

data[treeIndex] = new Node<>(source[left], left, right);

return;

}

int leftTreeIndex = leftChild(treeIndex);

int rightTreeIndex = rightChild(treeIndex);

int middle = left + ((right - left) >> 1);

buildTree(leftTreeIndex, source, left, middle);

buildTree(rightTreeIndex, source, middle + 1, right);

E treeData = merger.merge(elementData(leftTreeIndex), elementData(rightTreeIndex));

data[treeIndex] = new Node<>(treeData, left, right);

}

测试代码

public class Main {

public static void main(String[] args) {

Integer[] nums = {-2, 0, 3, -5, 2, -1};

SegmentTree<Integer> segmentTree = new SegmentTree<>(nums, Integer::sum);

System.out.println(segmentTree);

}

}

最后构造出的线段树如下,前面为元素值,括号中为包含的区间。

递归构造过程为

当左指针和右指针相等时,表示为叶子节点将左孩子和右孩子值相加,构造当前节点,依次类推

区间查询

/**

* 查询区间queryLeft-queryRight的值

*/

private E search(int treeIndex, int queryLeft, int queryRight) {

Node treeNode = data[treeIndex];

int left = treeNode.left;

int right = treeNode.right;

if (left == queryLeft && right == queryRight) {

return elementData(treeIndex);

}

int leftTreeIndex = leftChild(treeIndex);

int rightTreeIndex = rightChild(treeIndex);

int middle = left + ((right - left) >> 1);

if (queryLeft > middle) {

return search(rightTreeIndex, queryLeft, queryRight);

} else if (queryRight <= middle) {

return search(leftTreeIndex, queryLeft, queryRight);

}

E leftEle = search(leftTreeIndex, queryLeft, middle);

E rightEle = search(rightTreeIndex, middle + 1, queryRight);

return merger.merge(leftEle, rightEle);

}

查询区间2-5的和

public class Main {

public static void main(String[] args) {

Integer[] nums = {-2, 0, 3, -5, 2, -1};

SegmentTree segmentTree = new SegmentTree<>(nums, Integer::sum)http://;

System.out.println(segmentTree);

System.out.println(segmentTree.search(2, 5)); // -1

}

}

查询过程为

待查询的区间和当前节点的区间相等,返回当前节点值待查询左区间大于中间区间值,查询右孩子待查询右区间小于中间区间值,查询左孩子待查询左区间在左孩子,右区间在右孩子,两边查询结果相加

更新

/**

* 更新索引为index的值为e

*/

private void update(int treeIndex, int index, E e) {

Node treeNode = data[treeIndex];

int left = treeNode.left;

int right = treeNode.right;

if (left == right) {

treeNode.data = e;

return;

}

int leftTreeIndex = leftChild(treeIndex);

int rightTreeIndex = rightChild(treeIndex);

int middle = left + ((right - left) >> 1);

if (index > middle) {

update(rightTreeIndex, index, e);

} else {

update(leftTreeIndex, index, e);

}

treeNode.data = merger.merge(elementData(leftTreeIndex), elementData(rightTreeIndex));

}

更新只影响元素值,不影响元素区间。

更新其实和构建的逻辑类似,找到待更新的实际索引,依次更新父节点的值。

总结

线段树可以很好地处理区间问题,如区间求和,求最大最小值等。

以上就是java 数据结构之线段树详解的详细内容,更多关于Java 线段树的资料请关注我们其它相关文章!

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:路由器的工作原理及配置
下一篇:高速传输技术接口新霸主:Intel再创Thunderbolt“一线”生机
相关文章

 发表评论

暂时没有评论,来抢沙发吧~