GTC十年,英伟达开了一场“三无”发布会

网友投稿 246 2022-11-12

GTC十年,英伟达开了一场“三无”发布会

GTC十年,英伟达开了一场“三无”发布会。

尽管发布会没有出现外界期待的新架构,黄仁勋也没有发布7纳米GPU,但是整场发布会透露的关键词正成为目前英伟达最重要、最急需的事情:新生态。

黄仁勋认为生态系统是GPU计算成功的关键,这种新生态系统需要几个关键词:

Domains(域)

以下是黄仁勋的演讲。

大秀英伟达显卡特效,光线追踪技术惊艳四射

在第一章之前,黄仁勋首先推出CUDA-X AI,这是加速数据科学的唯一端到端平台。

接下来正式进入第一章计算机图形主题,黄仁勋不出所料的对英伟达的显卡特效又大秀了一番。

Unity增加了对Nvidia光线跟踪技术的预览支持,以推动游戏的真实性。

下图的车灯照片,左右两张几乎一模一样,你觉得哪张是假的呢?

答案是:右边的车灯是假的。

黄仁勋说,这种逼真效果得益于英伟达图灵RTX架构,画面是实时渲染的。

Epic Games已经宣布了Unreal Engine 4.22对英伟达RTX光线追踪的支持,Unity也只是时间问题,但现在这项技术正式进入了Unity的高清渲染管道(HDRP)预览版。

这项技术的重点在于游戏如何更逼真地呈现照明,显示光线如何与大气及其撞击物体的相互作用。这种技术已经在其他地方使用过,但所有这些都可能是资源密集型的,这使得过去几年的进步将其作为一个实时系统如此引人瞩目。

在演讲了一个小时之后,黄仁勋终于开讲第二章:AI和HPC。这部分主要由DGX和HGX组成。

数据科学是当今计算机科学领域不断增长的领域,所有关于从数据中学习并从中做出预测的方法形成了AI。英伟达对待AI有了新的态度和行为:重新梳理数据科学领域和所有机器学习工具,从Hadoop到Spart再到TensorFlow。

英伟达拥有实现AI所有步骤和工具的库,即黄仁勋之前强调的CUDA-X AI库,而黄仁勋也在思考,如何把当前的这么庞大的生态系统以及硬件和软件结合在一起。做法有二:

Tensor Cores Mixed Precision.已经添加到TensorFlow、PyTorch和MXNet中;

NVIDIA RAPIDS与Databricks的分析平台集成。

目前,谷歌云和微软云也添到RAPIDS中,TensorRT也已集成到Microsoft Onyx中。

除了集成和结合之外,英伟达还推出一款新的AI工具包,称之为Clara,其核心是一系列预先训练过的模型。

有了这些工具,英伟达在数据科学领域不断突破。黄仁勋说,仅去年一年,英伟达的深度学习研究所通过各种形式培训了10万名数据科学家,基于此,英伟达决定为数据科学家提供一个定制的工作站。

这个工作站核心是GPU和CUDA-X AI库,主打高性能计算和高速I/O。

黄仁勋认为,数据科学是新的HPC,超算和超大规模集群的区别在于,超算实际上做了很少的任务,而超大规模集群都是关于容量的,但是做了很多小工作。两者需要不同的系统/集群架构。

而数据科学处于两者中间位置,数据科学的任务比超大规模集群的任务更重,但比更少;比超级计算机更广泛,这就是英伟达的DGX-2设备现在适用的地方。

在发布会现场,不久前被英伟达以69亿美元收购的Mellanox公司CEO也上台,阐述为什么Mellanox愿意卖身英伟达,以及他们如何看待网络成为数据中心计算基础设施的一部分。

两个小巨人联手,英特尔在HPC领域的日子会难过吗?

边缘计算产品Jetson Nano:99美元的人工智能计算机

黄仁勋演讲的第三章:机器人。为什么要为机器人提供边缘算力?黄仁勋说,复杂的人工智能通常不适合自制设备,因为微型计算机很少能处理除了基本功能之外的东西。

因此,英伟达推出了入门级人工智能计算机Jetson Nano。

Jetson Nano关键特性:

GPU: 128-core NVIDIA Maxwell™ architecture-based GPU

CPU: Quad-core ARM® A57

视频: 4K @ 30 fps (H.264/H.265) / 4K @ 60 fps (H.264/H.265) 编码&解码

内存: 4 GB 64-bit LPDDR4; 25.6 gigabytes/second

Module Size: 70mm x 45mm

Developer Kit Size: 100mm x 80mm

未来的测试舰队是虚拟的

DRIVE Constellation是一个数据中心解决方案,包括两个并排服务器:

第一台服务器——DRIVE Constellation Simulator,从虚拟汽车生成传感器输出;

第二台服务器——DRIVE Constellation Vehicle,包含DRIVE AGX Pegasus AI车载电脑。

这个验证过程是实时运行的,可以按比例执行,多个单元并行运行各种测试。

有了这样的效率水平,DRIVE Constellation可以实现大量的驾驶体验——3000个单元每年可以行驶超过10亿英里。更重要的是,DRIVE Constellation中的每一英里都包含有趣的事件——包括罕见或危险的场景。

基于云的端到端工作流程

黄仁勋演示了DRIVE Constellation平台如何执行驾驶测试并在无缝工作流程中提供结果。

为了确定AV的性能,开发人员可以设置特定的评估程序,例如碰撞时间、跟随距离和乘客舒适度,在运行时查看测试,并可视化结果。

具有特定变化的相同测试可突出极端和危险条件 - 如密集交通,恶劣天气和低能见度 - 可以并行运行。 这种大规模的验证功能就像运行大量的测试车辆虚拟车队,在很短的时间内完成数月或数年的测试。

开放平台

DRIVE Constellation是一个开放的平台,这意味着它提供了一个编程接口,允许DRIVE Sim生态系统的合作伙伴集成他们的环境模型、车辆模型、传感器模型和交通场景。通过合并各种合作伙伴,平台可以生成全面、多样和复杂的测试环境。

由以色列仿真公司Cognata开发的详细流量和场景模型由DRIVE Constellation平台提供支持。 该公司使用世界各地的交通摄像头捕获的真实数据来创建准确的大规模交通模型。

利用Cognata的流量模型,开发人员可以根据实际流量数据定义其他车辆和道路使用者的数量及其行为。

汽车仿真公司IPG Automotive也与DRIVE Constellation合作,提供高保真车型。 它使开发人员能够准确地模拟车辆对各种DRIVE Sim命令的反应,例如转向、制动和油门以及各种道路状况。

同时,开放平台也是第三方和监管自主车辆标准的关键组成部分。

数据中心+边缘,英伟达转型路线图浮出水面

自从去年10月英伟达股价腰斩之后,就从AI芯片王座之上跌落,外界对于英伟达依赖游戏、挖矿等业务不看好,而英伟达在本月收购Mellanox,似乎也给外界回应:转型路线图浮出水面。

黄仁勋在收购Mellanox的新闻稿中说,“数据中心比以往任何时候都重要”。借助Mellanox,英伟达将优化整个计算、网络和存储堆栈中的数据中心规模工作负载,二者联合形成一个巨大的数据中心规模的计算引擎,为各类计算源源不断提供低成本算力。

另一方面,Jetson Nano为机器人和其他人工智能设备提供大脑,在边缘计算中,英伟达也占有一席之地,从而建立起以GPU算力为核心,诸多设备为护城河的生态系统。

至于有没有7纳米GPU、有没有新架构,这不是英伟达最紧急的事情。

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:java两个integer数据判断相等用==还是equals
下一篇:k8s之Pod健康检测
相关文章

 发表评论

暂时没有评论,来抢沙发吧~