c语言sscanf函数的用法是什么
232
2022-11-22
poj2891 Strange Way to Express Integers
Time Limit: 1000MS | Memory Limit: 131072K | |
Total Submissions: 17425 | Accepted: 5863 |
Description
Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following:
Choose k different positive integers a1, a2, …, ak. For some non-negative m, divide it by every ai (1 ≤ i ≤ k) to find the remainder ri. If a1, a2, …, ak are properly chosen, m can be determined, then the pairs (ai, ri) can be used to express m.
“It is easy to calculate the pairs from m, ” said Elina. “But how can I find m from the pairs?”
Since Elina is new to programming, this problem is too difficult for her. Can you help her?
Input
The input contains multiple test cases. Each test cases consists of some lines.
Output
Output the non-negative integer m on a separate line for each test case. If there are multiple possible values, output the smallest one. If there are no possible values, output -1.
Sample Input
2 8 7 11 9
Sample Output
31
Hint
All integers in the input and the output are non-negative and can be represented by 64-bit integral types.
Source
#include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; typedef long long ll; ll a[1010], b[1010], n; ll gcd(ll a, ll b) { if (!b) return a; return gcd(b, a % b); } ll exgcd(ll a, ll b, ll &x, ll &y) { if (!b) { x = 1; y = 0; return a; } ll temp = exgcd(b, a % b, x, y), t = x; x = y; y = t - (a / b) * y; return temp; } ll niyuan(ll x, ll mod) { ll px, py, t; t = exgcd(x, mod, px, py); if (t != 1) return -1; return (px % mod + mod) % mod; } bool hebing(ll a1, ll n1, ll a2, ll n2, ll &a3, ll &n3) { ll d = gcd(n1, n2), c = a2 - a1; if (c % d != 0) return false; c = (c % n2 + n2) % n2; n1 /= d; n2 /= d; c /= d; c *= niyuan(n1, n2); c %= n2; //取模,在哪一个模数下就要模哪个,模数要跟着变化. c *= n1 * d; c += a1; n3 = n1 * n2 * d; a3 = (c % n3 + n3) % n3; return true; } ll China() { ll a1 = b[1], n1 = a[1], a2, n2; for (int i = 2; i <= n; i++) { ll a3, n3; a2 = b[i], n2 = a[i]; if (!hebing(a1, n1, a2, n2, a3, n3)) return -1; a1 = a3; n1 = n3; } return (a1 % n1 + n1) % n1; } int main() { scanf("%lld", &n); for (int i = 1; i <= n; i++) scanf("%lld%lld", &a[i], &b[i]); printf("%lld\n", China()); return 0; }
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~